Discrete Randomness in Discrete Time Quantum Walk: Study via Stochastic Averaging
نویسندگان
چکیده
The role of classical noise in quantum walks (QW) on integers is investigated in the form of discrete dichotomic random variable affecting its reshuffling matrix parametrized as a SU2)/U(1) coset element. Analysis in terms of quantum statistical moments and generating functions, derived by the completely positive trace preserving (CPTP) map governing evolution, reveals a pronounced eventual transition in walk’s diffusion mode, from a quantum ballistic regime with rate O(t) to a classical diffusive regime with rate O( √ t), when condition (strength of noise parameter)×(number of steps) = 1, is satisfied. The role of classical randomness is studied showing that the randomized QW, when treated on the stochastic average level by means of an appropriate CPTP averaging map, turns out to be equivalent to a novel quantized classical walk without randomness. This result emphasizes the dual role of quantization/randomization in the context of classical random walk.
منابع مشابه
Arrival probability in the stochastic networks with an established discrete time Markov chain
The probable lack of some arcs and nodes in the stochastic networks is considered in this paper, and its effect is shown as the arrival probability from a given source node to a given sink node. A discrete time Markov chain with an absorbing state is established in a directed acyclic network. Then, the probability of transition from the initial state to the absorbing state is computed. It is as...
متن کاملQuantum two-state dynamics driven by stationary non-Markovian discrete noise: Exact results
We consider the problem of stochastic averaging of a quantum two-state dynamics driven by non-Markovian, discrete noises of the continuous time random walk type (multistate renewal processes). The emphasis is put on the proper averaging over the stationary noise realizations corresponding, e.g., to a stationary environment. A two-state non-Markovian process with an arbitrary non-exponential dis...
متن کاملStability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کاملLocalization of discrete-time quantum walks on a half line via the CGMV method
We study discrete-time quantum walks on a half line by means of spectral analysis. Cantero et al. [1] showed that the CMV matrix, which gives a recurrence relation for the orthogonal Laurent polynomials on the unit circle [2], expresses the dynamics of the quantum walk. Using the CGMV method introduced by them, the name is taken from their initials, we obtain the spectral measure for the quantu...
متن کاملWavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses
We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013